Quantum Behavior of a Heavy Impurity Strongly Coupled to a Bose Gas


«Physical Review Letters Editor’s Suggestion»
We investigate the problem of an infinitely heavy impurity interacting with a dilute Bose gas at zero temperature. When the impurity-boson interactions are short-ranged, we show that boson-boson interactions induce a quantum blockade effect, where a single boson can effectively block or screen the impurity potential. Since this behavior depends on the quantum granular nature of the Bose gas, it cannot be captured within a standard classical-field description. Using a combination of exact quantum Monte Carlo methods and a truncated basis approach, we show how the quantum correlations between bosons lead to universal few-body bound states and a logarithmically slow dependence of the polaron ground-state energy on the boson-boson scattering length. Moreover, we expose the link between the polaron energy and the spatial structure of the quantum correlations, spanning the infrared to ultraviolet physics.

Physical Review Letters 127*, 033401 (2021)